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1 Introduction
The QAOA (Quantum Approximate Optimization Algorithm) constitutes one of the most

promising quantum algorithm using noisy devices due to its low depth. In this study, we try to
perform a comparison between QAOA and SA (Simulated Annealing) on their ability to solve
problems. A similar study was done with Quantum Annealing [5]. We choose the maximum
cardinality matching problem and solve this problem for bipartite graphs. This problem is
empirically easy for SA for most of the bipartite graphs (see table 1). However, it fails to find
optimal solutions efficiently for Sasaki-Hajek graphs [4] (a restricted class of bipartite graphs).
Fully connected subgraphs of SH graph have edges increasing quadratically compared to edges
of the optimal solution. Hence, The difficulty to find the optimal solution with SA increases
when SH graph grows. The aim of this study is to use instances of SH graphs (hard for SA)
and random bipartite graphs (empirically easy for SA) to find out if the QAOA falls in the
same pitfall.

Is bipartite ? Best Classical complexity Is complex for SA ?
GI graph yes O(n) yes
Bipartite graph yes O

(
n5/2

)
no (most of them)

Random graphs no (most of them) O
(√

|V | · |E|
)

no (most of them)

TAB. 1 – Ability to solve Maximum Cardinality Matching considering SA

2 Problem statement
We transform the maximum cardinality matching problem into a combinatorial problem

defined by a cost function to optimize. Given a graph G = (V, E) with V the set of vertices
and E the set of edges, a matching M is a set of independant edges e ∈ M . The maximum
cardinality matching is the matching that maximizes |M |. Mapping this problem to a cost
function, we have the statement "maximize |M |" stated as :

Minimize −
∑
e∈E

xe with xe =
{

1, if e ∈ M

0, otherwise
(1)

Let us define a parametrized subset Γ(e) giving the list of adjacent edges to e, the requirement
specifying the notion of independant edges is met when :

if e ∈ M then ∀e′ ∈ Γ(e), xexe′ = 0 (2)

The set of above constraint is expressed with a penalty term −λ
∑

e∈E

∑
e′∈Γ(e) xexe′ where λ

acts as weight factor constant for the constraint. Adding this constraint to the cost function,
maximum cardinality matching of arbitrary graphs is expressed in its minimization form as :

Minimize −
∑
e∈E

xe + λ
∑
e∈E

∑
e′∈Γ(e)

xexe′ (3)

We use the same cost function to perform our experiments on SA and QAOA.



3 Mapping into QAOA with penalty
The first implementation of QAOA is based on Farhi et al. paper [2]. Each edge of the graph

is encoded with a single qubit. The mixing unitary UM (β) consists of a wall of RX gates. The
phase separation unitary Up(γ) encodes the cost function with the penalty terms. The cost
function is turned into the phase separation unitary by replacing each xe by (1 + Ze)/2 where
Ze denotes the operator Z acting on the eth qubit. This transformation leads to a linear part
(single Ze operators with weight ωe) and a quadratic part (product of ZeZe′ operators with
weight ωee′).

UM (β) : Xe terms ⇒ |qe⟩ Rx(2β) (4)

Up(γ) : ωeZe terms ⇒|qe⟩ Rz(2ωeγ) and ωee′ZeZe′ terms ⇒|qe⟩ • •
|qe′⟩ Rz(2ωee′γ)

(5)
4 Mapping into H-QAOA

The second implementation is based on articles [1, 3]. The mixing unitary UM (β) changes
and restricts the overall search space to valid matchings. The penalty term from Up(γ) operator
is removed and encoded into UM (β) with a control clause. RX rotation is done on qubit e only
if the condition in Equation 2 is fulfilled implying multi-control RX rotation.

UM (β) : {qe′1, qe′2, ...} ∈ Γ(e), Xe terms ⇒ |q′
e1⟩ X • X

|qe′2⟩ X • X

· · · · · ·

|qe⟩ Rx(2β)

(6)

Up(γ) : ωeZe terms ⇒ |qe⟩ Rz(2ωeγ) (7)

5 Conclusion and expectations
From these implementations, we will demonstrate whether or not QAOA meets the same

difficulty to solve SH instance as SA and QA (see. [5]). Even if H-QAOA should provide better
results than the basic version of the algorithm, the depth of the circuit highly increases due
to multi-control operations especially if the number of UM (β) and Up(γ) is high. The density
of the graph also has a huge impact on circuit depth. The benefits provided by the second
implementation are still unclear, particularly concerning the tradeoff between the quality of
the solution, the increase of the circuit depth and the noise induced by this increase.
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