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Context and Approach

Consequences of mapping higher order term on quantum computers:

• QA: requires a QUBO reduction, which adds extra variables. It leads
to dense QUBOs and additional factors on couplers.

• QAOA: requires an efficient swapping strategy.

Higher order term reduction by substitution (Rosenberg I.G. [1]):

bibjbk → babk + bibj − 2biba − 2bjba + 3ba

What is the performance of QA and QAOA solving HOBO problems ?
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Fig 1. QA and QAOA workflow.

Context

Formulations of the graph partitioning problem:

• Lucas A. [2]: Graph bi-partitioning

• Ushijima H. et al. [3]: Graph k-partitioning

• Rodriguez J. [4]: Hypergraph bi-partitioning

Related work

Fig 2. Recursive bi-partitioning example.

Recursive Hypergraph Partitioning

xv ∈ {0, 1}: vertex part
ωv ∈ R: vertex weight
ωe ∈ R: edge weight

k: number of parts
Ω(V) =

∑
v∈V ωv: vertices weight

Balancing constraint, for each level of recursion:

HA =
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v∈V

ωvxv −
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2

⌋
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⌉)2

(1)

This expression weights the number of nodes that should appear in π0

and π1 ∪ π2 according to their total weights (see Fig 2).
Cut cost:
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(1− xv)

))
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For example, the red hyperedge is cut with a penalty equal to:

1− (xuxv)− ((1− xu)(1− xv)) = 1 (3)

Final objective function to minimize:

C(x) = AHA +BHB (4)

Mathematical Model

Experiment and Results

QA settings (D-Wave):

• Quadratization: Rosenberg I.G. [1]

• Embedding: Cai J. et al. [5]

• Tested annealers: DW 2000Q, Adv4.1,
Adv6.1, Adv2 prototype

• Post-processing method: Majority vote

• Chain strength: set experimentally

QAOA settings:

• Global optimization method:
FOURIER[∞, 10] [6]

• Local optimization method:
Nelder-Mead [7]

• Simulation type (Qiskit Aer):

– Perfect simulation
– Simulation with Pauli noise

• Transpilation: Qiskit (optim level=1)
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Fig 3. Relative Chain Strength setting.
∆∗

E is the minimum energy gap and ϵd is
the duplication error rate.

Instances set: 3 groups of uniform hyper-
graphs with |V| = 10 and |E| = 15. Each
group is composed of 15 instances that are
connected and randomly generated.

Instance
QA qubit
overhead

(Adv2 prototype)

QAOA depth
overhead

cycle grid
2-uniform 175% 173% 178%
3-uniform 175% 159% 166%
4-uniform 581% 155% 135%

Table 1. Overheads induced by the
compilation.

Experimental setup and instances

Fig 4. QA and QAOA on uniform graphs

Fig 5. Noisy simulations of QAOA on 2-uniform graphs
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