

Context

Consequences of mapping higher order term on quantum computers:

- QA: requires a QUBO reduction, which adds extra variables. It leads to dense QUBOs and additional factors on couplers.
- QAOA: requires an efficient swapping strategy.

Higher order term reduction by substitution (Rosenberg I.G. [1]):

Recursive Partitioning Hypergraph

 $b_i b_j b_k \rightarrow b_a b_k + b_i b_j - 2b_i b_a - 2b_j b_a + 3b_a$

What is the performance of QA and QAOA solving HOBO problems ?

Fig 1. QA and QAOA workflow.

work

Related

 $x_v \in \{0,1\}$: vertex part k: number of parts $\Omega(\mathcal{V}) = \sum_{v \in \mathcal{V}} \omega_v$: vertices weight $\omega_v \in \mathbb{R}$: vertex weight $\omega_e \in \mathbb{R}$: edge weight Balancing constraint, for each level of recursion:

$$H_A = \left(\sum_{v \in \mathcal{V}} \omega_v x_v - \left\lceil \left\lfloor \frac{k}{2} \right\rfloor / k \times \Omega(\mathcal{V}) \right\rceil \right)^2 \tag{1}$$

This expression weights the number of nodes that should appear in π_0 and $\pi_1 \cup \pi_2$ according to their total weights (see Fig 2). Cut cost:

$$H_B = \sum_{e \in \mathcal{E}} \left(\omega_e \times \left(1 - \prod_{v \in e} x_v - \prod_{v \in e} (1 - x_v) \right) \right)$$
(2)

For example, the red hyperedge is cut with a penalty equal to:

 $--- \epsilon = 10^{-5}$

Formulations of the graph partitioning problem:

- Lucas A. [2]: Graph bi-partitioning
- Ushijima H. et al. [3]: Graph k-partitioning
- Rodriguez J. [4]: Hypergraph bi-partitioning

$$1 - (x_u x_v) - ((1 - x_u)(1 - x_v)) = 1$$
(3)

Final objective function to minimize:

$$C(x) = AH_A + BH_B \tag{4}$$

	Experiment and	Results	
Experimental setup and instances		Results	
 QA settings (D-Wave): Quadratization: Rosenberg I.G. [1] Embedding: Cai J. et al. [5] Tested annealers: DW_2000Q, Adv4.1, Adv6.1, Adv2 prototype Post-processing method: Majority vote Chain strength: set experimentally 	 QAOA settings: Global optimization method: FOURIER[∞, 10] [6] Local optimization method: Nelder-Mead [7] Simulation type (Qiskit Aer): Perfect simulation 	$\begin{array}{c} QAOA p-depth \\ 10 & 20 & 30 \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
$ \begin{array}{c} 70 \\ 60 \\ 50 \\ 8 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	 Simulation with Pauli hoise Transpilation: Qiskit (optim level=1) Instances set: 3 groups of uniform hypergraphs with V = 10 and E = 15. Each group is composed of 15 instances that are connected and randomly generated. 	$f_{-} = \frac{1}{500 \text{ 1000}} \int_{\text{DW Annealing time (ms)}}^{0^{-}} \int_{\text{500 1000}}^{500 \text{ 1000}} \int_{\text{DW Annealing time (ms)}}^{0^{-}} \int_{\text{500 1000}}^{500 \text{ 1000}} \int_{\text{DW Annealing time (ms)}}^{0^{-}} \int_{\text{3-uniform hypergraph}}^{500 \text{ 1000}} \int_{\text{DW Annealing time (ms)}}^{0^{-}} \int_{\text{3-uniform hypergraph}}^{0^{-}} \int_{\text{3-uniform hypergraph}}^{0^{$	

Fig 3. Relative Chain Strength setting. Δ_E^* is the minimum energy gap and ϵ_d is the duplication error rate.

Instance	QA qubit overhead (Adv2 prototype)	QAOA depth overhead			
		cycle	grid		
2-uniform	175%	173%	178%		
3-uniform	175%	159%	166%		
4-uniform	581%	155%	135%		
Table 1. Overheads induced by the					
compilation.					

Fig 5. Noisy simulations of QAOA on 2-uniform graphs

[1] Rosenberg, I.G.: Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d'Etudes de Recherche Operationnelle 17, 71–74 (1975)

[2] Lucas, A.: Ising formulations of many np problems. Frontiers in physics p. 5 (2014)

[3] Ushijima-Mwesigwa, H., Negre, C.F., Mniszewski, S.M.: Graph partitioning using quantum annealing on the d-wave system. In: Proceedings of the PMES. pp. 22–29 (2017)

[4] Rodriguez, J.: Quantum algorithms for hypergraph bi-partitioning. 23rd ROADEF . INSA Lyon, Villeurbanne - Lyon, France (Feb 2022), https://hal.archives-ouvertes.fr/hal-03595234

[5] Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741 (2014)

[6] Zhou, L., Wang, S.T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Physical Review X 10(2), 021067 (2020) [7] Gao, F., Han, L.: Implementing the nelder-mead simplex algorithm with adaptive parameters. Computational Optimization and Applications 51(1), 259–277 (2012)