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Abstract. With the recent availability of Noisy Intermediate-Scale
Quantum devices, the potential of quantum computers to impact the field
of combinatorial optimization lies in quantum variational and annealing-
based methods. This paper further compares Quantum Annealing (QA)
and the Quantum Approximate Optimization Algorithm (QAOA) in
solving Higher Order Binary Optimization (HOBO) problems. This case
study considers the hypergraph partitioning problem, which is used to
generate custom HOBO problems. Our experiments show that D-Wave
systems quickly reach limits solving dense HOBO problems. Although
the QAOA demonstrates better performance on exact simulations, noisy
simulations reveal that the gate error rate should remain under 10−5

to match D-Wave systems’ performance, considering equal compilation
overheads for both device.
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1 Introduction

As we enter the Noisy Intermediate Scale Quantum (NISQ) era, companies are
now building chips that control a few hundred qubits for quantum circuit models
and several thousand for quantum annealers. The selection of interesting prob-
lems that run successfully on noisy quantum chips is now a key point of interest
for researchers and industries alike. As quantum heuristics performance limits
are easier to reveal in the higher instance density regime, which either requires
qubit duplications or larger circuit depths, we use HOBO problems to generate
k-local Hamiltonians of custom density. An experimental study of the impact of
the HOBO formulation on the QAOA was done in [5], demonstrating that higher
order formulations were favorable to the QAOA. E. Pelofske et al. [11] also com-
pared the ability of QA and the QAOA to solve HOBOs perfectly adapted to
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ibm washington’s graph connectivity containing cubic interaction terms, show-
ing that current ideal QAOA execution on real hardware could not match QA
results quality.

We propose another study case to experimentally evaluate bounds on the
error rate that would permit QAOA to beat QA on results quality. As a use
case, we generate HOBO formulations from Balanced Hypergraph Partitioning
(BHP) problems, which is well-known in combinatorial optimization due to the
difficulty of finding a good solution. It consists in dividing the vertices into differ-
ent subsets, considering a balancing constraint while minimizing the number of
hyperedges connecting the partitions. The balancing constraint acts as a global
constraint and requires a strong coupling between the variables of the problem.
This problem is interesting as its transformation into the Ising model gives a fully
connected 2-local Hamiltonian with some k-local terms representing hyperedges.
A general formulation for graph bi-partitioning using the Ising model was pro-
posed in [9]. This formulation has been extended to graph k-partitioning in [16],
with an experimental comparison between state-of-the-art partitioning methods
and the quantum hybrid method qbsolv , which seems competitive. H. N. Djidjev
et al. [6] are less optimistic and demonstrate that the advantage of the quantum
annealer is still limited by the size of the quantum chip. They also underline the
importance of accounting for compilation time, which can represent up to 99%
of the computation run time for large instances. Recent theoretical results on the
limitations of the QAOA on pure k-spin model are available in [2]. The authors
show that the QAOA is subject to optimality limitations for any even k ≥ 4 in
the infinite size limit for fixed p. It sets a first theoretical bound, proving that
the QAOA may encounter strong limitations in solving HOBO problems.

Our contributions are two-fold. The first one is a recursive formulation of the
BHP problem as a HOBO problem. The second contribution is a performance
comparison of two quantum heuristics: the QA and the QAOA. In particular, our
experiments suggest that noisy QAOA will only compete with D-Wave systems
on low density problems if the error rate remains under 10−5.

2 Problem Formulation

The formulation of the BHP problem is an extension of a previous work based
on hypergraph bi-partitioning [13]. A Hypergraph is a generalization of a graph
where hyperedges can be connected to one or more vertices. Let H def= (V, E)
the hypergraph defined from a set of vertices V and a set of hyperedges E . A k-
partition Π of H is a splitting of V into k vertex subsets πi with 1 ≤ i ≤ k, called
parts, such that : (i) each part πi respects the capacity constraint : ∀i, |πi| ≤ |V|

k ;
(ii) all parts are pairwise disjoint : ∀i, j i �= j, πi ∩ πj = ∅ ; the union of all
parts is equal to V:

�
i πi = V. A cut for a k-partition Π of H is the union of

hyperedges that contain at least two vertices in different parts and the cut-size
fc is the number of cut edges. Our formulation minimizes the min-cut metric
with a balanced constraint. Considering k the final number of partitions, at a
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given level of recursion, the capacity constraint for one recursion splitting the
vertices v into 2 sub-parts xv ∈ {0, 1} is:

HA =

��

v∈V
ωvxv −

��
k

2

�
/k × Ω(V)

��2

(1)

where ωv is the weight of each node v and Ω(V) =
�

v∈V
ωv. Ω(V) = |V| for

unweighted graphs. This expression weights the number of nodes that should
appear in π0 and π1 according to their total weight. The second component of
the cost function is used to minimize the min-cut metric fc:
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�
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ωe ×

�
1 −
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xv −
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v∈e

(1 − xv)
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ωe corresponds to the weight of the hyperedge e. The weight ωe is added to fc

when ∀v ∈ e,∃v� ∈ e with v� �= v and xv �= xv� . The objectives HA and HB are
then gathered to create the final objective to minimize. Coefficients A and B are
real numbers and are used to weight each objective:

C(x) = AHA + BHB (3)

The reader can refer to the method described in the paper of Lucas et al. [9] to
set the coefficients A and B. The upper formulation is only valid for a recursive
k-partitioning algorithm. If the formulation was for a k-direct partitioning, it
would be possible to encode vertex affectation to each partition using logarithmic
k-partition encoding, as for coloring problems [15].

3 Experimental Setup

We solve HOBO problems using two quantum optimization methods: QA and
the QAOA. The metric used for comparison is the energy gap Δ∗

E , which is
the difference between the energy of the ground state (classically exhaustively
computed) and the mean energy of the expectation value.

Our work is based on hypergraphs composed of 10 nodes and 15 hyperedges.
A first set of instances is composed of k-uniform hypergraphs with k ∈ {2, 3, 4}.
The parameter k is limited to 4 to avoid trivial solutions. For each value of k,
15 instances are randomly generated.

3.1 Setup of D-Wave Systems

D-Wave processors [3] are designed to minimize an Ising cost function H taking
an input vector s = (s1, s2, ..., sn) with si ∈ {+1,−1} where hi and Jij are real
numbers.

H(s1, s2, ..., sn) = −
n�

i=1

hisi −
n�

i<j

Jijsisj (4)



Solving HOBO Problems on NISQ Devices: Experiments and Limitations 227

The translation between QUBO and Ising cost function is straightforward
with a simple variable change xi = 1−si

2 .
Experiments were done on the most recent chip Advantage2 prototype1.1,

which produced the best results minimizing the Ising cost functions. D-Wave
systems require a QUBO formulation of the initial problem. The transformation
used to convert HOBO to QUBO is done using Rosenberg reduction [14] to
quadratize the terms of the cost function.

We used the heuristic presented in [4] to map the QUBO on the D-Wave
Quantum Process Unit. Our experiments consider average-quality embedding to
avoid bias by selecting only the best embeddings over multiple tries. Majority
voting is used during the post-processing phase to determine the final value of
each variable. We do not use further specific processing such as spin reversal
technique [12] or pausing time.

For each group of HOBO problems transformed to QUBO problems, we
numerically study their optimal chain strength cs using a factor called Rela-
tive Chain Strength [17]:

cs = RCS × max({hi} ∪ {Jij}) (5)

The sampling of different values for the chain strength experimentally deter-
mines the optimal RCS factor. Figure 1 a. shows that a phase transition occurs
when the RCS factor becomes sufficient, leading to a significant improvement.
The duplication error rate of qubits measured when the majority vote occurs
follows the same phase transition. This evaluation is repeated for each k and
optimal average values RCS∗ are presented in Table 1.

Fig. 1. Parameter settings of QA and the QAOA. (a) shows the RCS parameter sam-
pling for 2-uniform instances with impact on the energy gap Δ∗

E and duplication error
rate on qubits �d. (b) shows the implementation of each ωij...nσiσj ...σn term derived
from the HOBO cost function terms. (c) shows Uβ implementation with β rotation
around the X-axis since the domain is not restricted.
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3.2 Setup of the QAOA

The QAOA [7] circuit is built from the Hamiltonian derived from the HOBO
cost function. Unlike D-Wave systems, the k-local Hamiltoninan can be imple-
mented by the QAOA without quadratization. Figure 1 b. and c. show the uni-
tary implementation corresponding to both problem and mixing Hamiltonian.
We perform perfect and noisy simulations of these quantum circuits using the
IBM Qiskit library [10]. The Aer simulator is used to perform the simulations,
which offers a nice trade-off between execution speed and quality of the results.
We use Qiskit Pauli error model for noisy simulation with the same error rate
� for bit-flip and phase-flip. We assume that the initialization and measurement
of qubits are noiseless. Noisy simulations of quantum circuits are executed on
different topologies to analyze the benefits of each chip density D. We study 3
different topologies: one which is fully connected, another one based on IBM’s
ibmq guadalupe heavy-hex topology with a cycle layout of 12 qubits (D = 0.17).
The last topology comes from sycamore chip and is a grid layout of 12 qubits
(D = 0.26). The mapping of circuits on topologies that are not fully connected
requires additional SWAP gates added by the Qiskit transpiler, which generates
gate depth overheads.

The QAOA experiment is done from p = 1 to p = 30. At each step p = i,
a local optimizer is used to find the optimal set of angles �γ∗

p = (γ1, ..., γp),
�β∗
p = (β1, ..., βp). We use Nelder-Mead optimization method [8] with a maxi-

mal number of function evaluations (i.e., quantum circuit execution) set to 300.
The concentration of good parameters at p-depth ( �γ∗

p , �β∗
p) for small values of

p has been analytically proven in [1]. L. Zhou et al. [18] introduced an opti-
mization method based on discrete sine and cosine transform that benefits from
this parameter concentration. The authors call it FOURIER[q, R], and use it to
initialize angles (γp+1, βp+1) from the sets �γp, �βp. The variable q specifies the
length of the vector of frequencies. We consider the case when q = p, meaning
that q parameter grows with p when a pair of angles is added. R parameter is the
number of local optima calculated at each level p. Following their notations, we
use FOURIER[∞, 10] global optimization method for each QAOA simulation.
For each experiment, we set γ ∈ [0, 2π] and β ∈ [0, π].

4 Results

The impact of HOBO problem’s density on QA and the QAOA is shown in Fig. 2.
It compares D-Wave Advantage2 prototype1.1 and the QAOA ability to find
optimal solutions to HOBO problems generated from k-uniform hypergraphs.
The perfect simulation of the QAOA surpasses D-Wave systems on 2-uniform
(3-uniform) hypergraphs when p = 24 (p = 22). It shows that the increase in
the cardinality of the hyperedges severely limits the performance of the D-Wave
quantum computer, which becomes highly inefficient for cardinalities greater
than 4. This performance loss is caused by the Rosenberg decomposition cou-
pled with the qubits duplication needed for mapping the problem on D-Wave
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chip’s topology. These two processing steps multiply the required physical qubits
by 581% for 4-uniform hypergraphs for D-Wave systems (see Table 1). Compar-
atively, 4-uniform hypergraphs only increase QAOA depth by 155% on the cycle
topology compared to a fully connected topology. The overheads difference is less
important for 2-uniform hypergraphs (175% qubit overhead for D-Wave against
173% gate depth overhead on the cycle topology). One can observe that there is
no significant difference in circuit depth overheads between cycle and grid lay-
outs, meaning that the Qiskit transpiler algorithm doesn’t fully take advantage
of the higher connectivity of the grid layout.

Table 1. BHP problem instances description. Each set of instances is composed of
15 hypergraphs having 10 nodes and 15 edges. The (RCS∗) is calculated for each set.
The first table shows the overheads of physical qubits needed by D-Wave systems. The
second table shows the overheads of gate depth for each topology compared with a
fully connected topology. Green cells highlight smallest overheads.

BHP instances D-Wave system Advantage2 prototype 1.1

#terms RCS∗ #var QR #qubits

min max mean min max mean ratio

2-uniform 55 3.6 10 10 10 17 18 17.5 175%

3-uniform 55 3.0 10 10 10 17 18 17.5 175%

4-uniform 119.6 0.5 24 29 26.8 48 70 58.1 581%

BHP instances QAOA Circuit depth p = 1

complete topology cycle topology grid topology

min max mean min max mean ratio min max mean ratio

2-uniform 96 126 110.6 167 220 191.3 173% 178 220 196.9 178%

3-uniform 105 150 129.2 174 234 206 159% 185 264 213.9 166%

4-uniform 281 362 323.2 438 581 499 155% 400 485 439 135%

We further study the group of 2-uniform hypergraphs and estimate a noise
rate threshold of single and double qubit gates that would permit the QAOA
to reach D-Wave performance. Optimal angles are considered to be known at
each p-layer. The simulation is done with optimal angles ( �γopt

p , �βopt
p ) found by

the FOURIER[∞, 10] method on Aer simulator. Figure 3 shows the simulation
of the QAOA considering various qubit layouts compared to D-Wave systems’
best performance on the same instances. The QAOA simulation reaches the best
expectation value found by D-Wave Advantage2 prototype1.1 at p = 30 with
� = 10−5. Under this threshold, the QAOA becomes inefficient at p ≈ 10 for
� = 10−3 and p ≈ 27 for � = 10−4. Curves on Fig. 3 a) and b) demonstrate lots
of fluctuation, reminiscent of the noise impact on the optimization landscape,
even when perfect angles are already known. This last experiment can be consid-
ered equally favorable to D-Wave and the QAOA, implying approximately 175%
overheads for each physical implementation: 175% qubits overheads for D-Wave
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Fig. 2. Quantum heuristics performance solving the BHP problem, using the energy
gap Δ∗

E as performance measure. Graphs (a), (b) and (c) respectively show the perfor-
mance of D-Wave Advantage2 prototype1.1 and QAOA on 2, 3 and 4-uniform hyper-
graphs. The shaded area represents the standard deviation of each curve.

Fig. 3. Simulation of bi-partitioning 2-uniform hypergraphs using QAOA (red) and
D-Wave (blue). a) , b) and c) respectively show noisy simulations on fully connected,
cycle, and grid layouts. The shaded area represents the standard deviation at � = 10−5.
(Color figure online)

systems, versus 173% and 178% depth overheads for cycle and grid topologies.
Considering an equal overhead produced by the compilation step, this experi-
ment sets a first bound on noise rate to allow the QAOA to reach D-Wave best
available systems, which is 10−5.

5 Conclusion

This work proposes a general approach to compare the performance of D-Wave
systems with the QAOA solving HOBO problems. We proposed a method to
generate HOBO cost functions from BHP problems with various densities. The
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higher density regime, illustrated by HOBO problems with many terms, identi-
fies the performance limitations of the QAOA and D-Wave systems. The former
is limited by the noisy implementation of gates and the latter by its sparse
topology. Even if the QAOA reaches D-Wave systems performance on perfect
simulations for low-density problems, the variational heuristic gets rapidly stuck
on noisy simulations. Our experiment suggests that a single quantum gate error
rate � < 10−5 would permit the QAOA to reach D-Wave systems performances,
when the compilation overheads are the same for QA and the QAOA. This bound
could be improved with more experiments and a larger set of instances. Current
circuit chip designers are approaching this threshold with superconducting sys-
tems having � ≈ 10−3 and ion-based qubits systems having � ≈ 10−4 for single-
qubit gates. On the other hand, dense HOBO problems represent hard instances
for D-Wave systems, implying the use of quadratic reduction techniques and
qubits duplications. Future work will investigate the density threshold for which
the performance of the QAOA and QA crosses.
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congrès annuel de la Société Française de Recherche Opérationnelle et d’Aide à
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