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Abstract. The growing availability of quantum computers raises ques-
tions about their ability to solve concrete problems. Existing benchmark
protocols still lack problem diversity and attempt to summarize quantum
advantage in a single metric that measures the quality of found solutions.
Unfortunately, the solution quality metric is insufficient for measuring
quantum algorithm performance and should be presented along with
time and instances coverage metrics. This paper aims to establish the
TAQOS protocol to perform a Tight Analysis of Quantum Optimization
Systems. The combination of metrics considered by this protocol helps
to identify problems and instances liable to produce quantum advantage
on Noisy-Intermediate Scale Quantum (NISQ) devices for useful applica-
tions. The methodology used for the benchmark process is detailed and
an illustrative short case study on the Max-Cut problem is provided.
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1 Introduction

Quantum manufacturers are currently building chips with several hundred qubits
for circuit-based quantum computers and thousands of qubits for quantum
annealers. As the NISQ era [20] begins, it remains unclear whether noisy quan-
tum computers will have useful applications in the near term, since quantum
error correction codes still require too much qubits to be efficient. Defining
whether a quantum algorithm could bring a quantum advantage on a specific task
is far from straightforward, as the full quantum stack usually involves complex
classic and quantum processing where each subpart constitutes a full research
domain. One relevant class of problems that may be subject to quantum advan-
tage are optimization problems that naturally map on Adiabatic Quantum Opti-
mization (AQO) systems. Hybrid quantum algorithms also provide an interesting
option to solve optimization problems, especially using the Quantum Approx-
imate Optimization Algorithm (QAOA) [8]. This algorithm exhibits a robust
behavior under noisy regime [11,23] and encouraging theoretical bounds of con-
vergence have been proven for specific problems at fixed depth [4,8]. The plethora
of optimization problems being developed and benchmarked using Quantum
Annealing (QA) and the QAOA requires a rigorous methodology to report the
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performance of these heuristics. To this end, this paper introduces one methodol-
ogy termed the TAQOS protocol, which performs a Tight Analysis of Quantum
Optimization Systems performance. This protocol defines the guidelines and
properties of an application-based competitive benchmark. The instances and
the source code are available at [10].

1.1 Related Work

Protocols used to benchmark the performance of classical heuristics appeared in
the 1970 s s and provide useful guidelines to produce high-quality classical com-
puter benchmarks. Several best practices and guidelines for evaluating computer
performance exist in the current literature [15]. One important approach is found
in [3], which splits the performance study into two types of benchmarks. The first
type is competitive benchmark which aims to directly and quantitatively com-
pare the performance of different algorithms. Whereas the second type, named
descriptive benchmark, is used to analyze and understand the factors that impact
algorithm performances. While competitive benchmark should be composed of
fast-to-compute unbiased metrics to compare algorithm performance, descriptive
benchmark can be composed of more complex metrics serving a better under-
standing of the algorithmic behavior.

As quantum annealers have improved (e.g., D-Wave systems [1]), the scientific
community has begun to evaluate their performance against advanced classical
heuristics. T. Albash et al. [2] showed that the scaling advantage of QA could
outperform well-known classical heuristics such as simulated annealing. Several
studies on specific Ising models, such as Spin-Glass and Sherrington-Kirkpatrick
models, have shown that quantum annealers could perform better than classical
methods on specific cases [12,19].

Quantum circuit performance evaluation started with randomized benchmark-
ing methods of single-qubit gates circuits. This protocol, presented by E. Knill in
[13], was then extended to multi-qubits gates circuits in [17]. Both protocols are
scalable as they are strictly based on circuits only using Clifford gates, producing
an output distribution that can be known efficiently with a classical computer.

Other studies have tried to define a set of metrics to measure the potential
of quantum circuits. The Quantum Volume [6] evaluates the maximum size of
a square circuit that can run reliably on a given quantum chip. The Volumetric
Benchmark [5] extends this method to rectangle circuits. Both metrics provide
insights about the volume (width and depth) that can run reliably on a chip. The
precise and costly evaluation of the output distribution (based on Heavy Output
Generation) classifies both metric use into descriptive benchmark. These metrics
do not report on the fidelity nor quality of the output of specific application
circuits and are not scalable for such uses.

A scalable competitive metric, called the Q-score, has recently emerged to
evaluate solutions to the Max-Cut problem [18]. This metric is the first attempt
to design a hardware-independent way to measure quantum performance. Fel-
lous et al. [9] introduced a methodology named Metric-Noise-Resource (MNR)
to evaluate the ratio between energy consumption and quality of the solution
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provided by an error-corrected quantum computer. MNR is the first methodol-
ogy to estimate energy consumption with the launching of the Quantum Energy
Initiative.

Finally, several frameworks have been developed to benchmark applications,
such as the QEC-D framework [16] and the QASM Bench [14]. These frameworks
provide sets of metrics to test applications but are still dedicated to perform
descriptive benchmark of small instances by studying the fidelity of the output
distribution of the circuit.

2 TAQOS Benchmark Protocol

The TAQOS protocol aims to establish a fair benchmarking protocol to compare
quantum algorithms, such as AQO and the QAOA, with classical algorithms.
Figure 1 shows the workflow of the two quantum heuristics. Each dotted box
is an abstract description of a computational task. One can perform a factorial
study by testing several implementations of a single dotted box and letting the
rest of the workflow unchanged. Each of the two quantum heuristics exhibits
at least one critical task proven NP-Hard: the Quadratic Unconstrained Binary
Optimization (QUBO) problem mapping for AQO (task #2) and the transpi-
lation of the circuit to the hardware topology for the QAOA (task #8). The
methods used to select optimized hyper-parameters (task #3, #7, #8 and #10)
for the execution of quantum algorithms should be specified. For example, the

Fig. 1. Workflow of quantum optimization methods: AQO and the QAOA. Each dotted
line box defines a processing action with run time variables tx involved.
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selection of the chain strength and the unembedding method should be docu-
mented for experiments on AQO using D-Wave systems. For the QAOA, the local
and global optimization procedure to get an appropriate set of angles should be
detailed with processing time spent and termination conditions. For the fairness
of benchmark studies, each experiment should analyze the computation time
corresponding to each dotted box.

2.1 Metrics

Competitive benchmark metrics must be scalable, hardware-independent, and
efficiently computed. In addition, the metrics must be comparable to the results
obtained by state-of-the-art optimization methods. The TAQOS protocol con-
siders three different quantities to evaluate the performance of a quantum solver:
the quality of the result, the time to get the solution, and the energy spent by
the computer to get the result. A fourth metric evaluates the robustness of the
quantum heuristic and computes the coverage of the set of instances.

Let P = {P1, P2, ..., PN} be a set of combinatorial problems and I the set of
all possible instances associated to the problem Pn. Each instance Ii ∈ I has a
set of solutions S. Let Sq be the subset of solutions found by a quantum com-
puter. The objective function c evaluates the quality of a solution s. Considering
a maximization problem, the best solution obtained by a quantum computer has
the cost c∗

q = maxsi∈Sq c(si) and is denoted s∗
q. Let cc∗ be the cost associated

with the best solution obtained by a classical heuristic and cref the cost of refer-
ence (for example, the best-known solution to a specific problem). The function
rref evaluates the quality of a solution si as a ratio of the reference cost:

rref(c(si), cref) =
cref − c(si)

cref
(1)

A negative ratio implies that the quality of the solution si is better than
the solution of reference. Let the wall clock time associated with the quantum
(classical) computation be tq (tc) and the energy consumption be eq (ec). The
following set of inequalities defines a definitive quantum advantage over classical
computation for a specific instance:

rref(c∗
q, cref) ≤ rref(c∗

c , cref)

t∗q ≤ t∗c

e∗
q ≤ e∗

c

(2)

Quality Metric. The benchmark of NP-Hard problems requires the definition of
an efficiently calculated quality metric. We opt to measure the quality of the
solution following the recommendations of R. S. Barr et al. [3], taking the Best-
Known Solution (BKS) as the solution of reference of cost cref . r�(I) computes
the fraction of instances for which the ratio rref is less than �. We define slices
with � ∈ [0, 1], e.g., within 1, 5 or 10% to optimality, to detect sets of instances
amenable to produce close-to-optimal results:
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r�(I) =
|{Ii ∈ I with rref(cq∗, cref) < �}|

|I| (3)

r0(I) outputs the ratio of solutions that are better than the solution of reference.

Wall Clock Time Metric. Wall clock time metric should include the whole pro-
cessing time from the problem formulation to the solution extraction (see Fig. 1).
The device setting time of hyper-parameter that require quantum (classical) pro-
cessing is denoted thyper−pq(thyper−pc). The wall clock processing time of AQO
is defined in Eq. 4.

tquantum = (tinit + trun + tdelay) × nbshots + thyper−pq

tclassical = treduction + tembedding + thyper−pc + tcom + tqueue + tpost−proc

tAQO wall clock = tquantum + tclassical

(4)

The wall clock processing time of the QAOA with local and global optimiza-
tion of angles can be specified as:

tlocal quantum = (tinit + trun + tdelay) × nbshots × nblocal opt

tlocal classical = nblocal opt × (tcom + tqueue + thyper−pc + topt angles)
tquantum = nbglobal opt × tlocal quantum

tclassical = nbglobal opt × (tbuild circ + tcompile + tlocal classical) + tpost−proc

tQAOA wall clock = tquantum + tclassical

(5)

Energy Consumption Metric. Quantum computers are deemed less energy-
consuming than supercomputers. However, their power consumption is presently
not disclosed with enough precision by quantum hardware manufacturers. At this
stage, we therefore let energy consumption metrics as perspectives.

Coverage metric. The last metric evaluates the coverage of the set I. Classical
studies based on Algorithm Selection Problem [21] demonstrated an existing link
between the instance structure and the relative performance of specific heuristics
[7,22]. Combined with the quality metric, the coverage metric evaluates the
robustness of the heuristic. We follow the work of I. Dunning [7] and compute
a set of metrics specific to one optimization problem (e.g., the density of an
instance for a problem based on graphs). The coverage c� of a metric f is an
interval at fixed �:

c�(f, Ii) = [f(Ii) − �, f(Ii) + �] ∩ [0, 1] (6)

The whole coverage of a metric f on a set of instances I is:

C�(f, I) =
�

Ii∈I
c�(f, Ii) (7)

These four metrics define the building blocks of the TAQOS protocol. An illus-
tration of their use is presented in the next section.
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2.2 Use Case on the Max-Cut Problem

This section presents a case study of the TAQOS protocol on the Max-Cut prob-
lem. The Max-Cut formulation is very close to the Ising model problem, easily
mapped on existing qubit interconnects. Moreover, the classical community has
studied this problem well, with several open-source implementations of heuris-
tics (e.g., the MQLib [7]). Let G def= (V, E) the graph with a set of vertices V
and a set of edges E . The maximum cut of a graph is the partition of its vertices
into two subsets S and T such that the number of edges shared by S and T is
maximum. The cost function to be maximized is C(G) = − �

i,j∈E ωijsisj with
si, sj = ±1. The problem is turned into a minimization problem by changing the
sign of ωij .

Our instances of the Max-Cut problem are generated from the topology of
four D-Wave systems. Random ωij coefficients are drawn from the set {+1, −1}
with same probability. Each instance is strongly favorable to D-Wave systems as
it perfectly maps the topology of the quantum chip. However, the generated Ising
Spin-glass problem is still hard to solve for classical heuristics. Results are pre-
sented in Table 1. The benchmark is done on 30 instances for each graph, consid-
ering D-Wave solutions as reference solutions. The annealing time is set to 100 µs
and the sampling is done over 256 shots (nbshots). We did not tune the gauge

Table 1. Performance comparison between quantum and classical algorithms used to
solve the Max-Cut problem on four different graphs tailored for D-Wave’s quantum
chips topology. Results are averaged over 30 instances for each graph. Green cells
underline best classical runs for each time frame: {1, 10, 100}.

Quantum
solvers

Wall
clock
time
(s)

Chimera graph
DW 2000Q
|V| : 2041
|E| : 5974

Pegasus graph
Adv4.1

|V| : 5621
|E| : 40279

Pegasus graph
Adv6.1

|V| : 5616
|E| : 40135

Zephyr graph
Adv2

|V| : 563
|E| : 4790

DW2000Q 1.43 cref / / /

Adv4.1 2.90 / cref / /

Adv6.1 2.88 / / cref /

Adv2 1.18 / / / cref

Classical r0 r0.01 r0.05 r0.1 r0 r0.01 r0.05 r0.1 r0 r0.01 r0.05 r0.1 r0 r0.01 r0.05 r0.1

Random 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.03

DUARTE 1 0 0 0.97 1 0 0 0.9 1 0 0 0.7 1 0.1 0.3 1 1

2005 10 0 0 1 1 0 0 1 1 0 0 1 1 0.23 0.47 1 1

100 0 0 1 1 0 0 1 1 0 0 1 1 0.4 0.6 1 1

FESTA 1 0 0 0 1 0 0 0 0.37 0 0 0 0.53 0 0.17 0.93 1

2002 10 0 0 0.9 1 0 0 0 1 0 0 0 0.9 0.3 0.5 1 1

GPR 100 0 0 1 1 0 0 0 1 0 0 0 1 0.3 0.53 1 1

FESTA 1 0 0 0 1 0 0 0.03 1 0 0 0 1 0 0.07 0.97 1

2002 10 0 0 0 1 0 0 0.03 1 0 0 0.07 1 0.1 0.3 1 1

GVNS 100 0 0 0 1 0 0 0.33 1 0 0 0.23 1 0.17 0.5 1 1

FESTA 1 0 0 0.03 1 0 0 0.03 1 0 0 0 1 0.07 0.27 1 1

2002 10 0 0 1 1 0 0 0.17 1 0 0 0.2 1 0.3 0.6 1 1

GVNSPR 100 0 0 1 1 0 0 0.5 1 0 0 0.37 1 0.4 0.67 1 1
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Fig. 2. (a) Shows the coverage rate of the set of evaluated instances. Coverage rates
are computed from normalized graph metrics such as density, diameter, eccentricity,
etc. The last metric measures the qubit mapping efficiency. The minimum, maxi-
mum, mean and standard deviation are available to study the distribution of these
metrics. The coverage rate corresponds to the total length of intervals in C0.05(f, I).
(b) Details the run time of quantum heuristics. Each time is averaged over the 30
instances. treduction, tembedding and thyper−pq are set to 0 as the study does not require
any of the corresponding computational task.

inversion or pausing times. The D-Wave’s performance is compared with algo-
rithms from the MQLib [7] that constitute state-of-the-art methods used to solve
the Max-Cut problem. Each classical algorithm is run over three time periods
(1 s, 10 s, 100 s) on a single processor Intel R� CoreTM i7-6600U 2.6GHz. The met-
ric c� is measured for � ∈ {0, 0.01, 0.05, 0.1}. For large graphs (i.e., Chimera and
Pegasus) D-Wave annealers constantly outperform classical heuristics, even with
less run time. The classical heuristics perform well on smaller graph (Zephyr) and
outperform some reference solutions found by D-Wave, even with less run time.
However, the competitive performance of the D-Wave systems must be inter-
preted considering the coverage rate of tested instances, shown in the Fig. 2a.
These four graphs cover a very small range of graph-specific coverage metrics
(less than 10% for almost every metric with � = 0.05). The run time of D-
Wave systems is low because the set of instances, owing to their topology, avoids
time-consuming operations such as reduction, embedding and hyper-parameter
settings (see Fig. 2b). This use case shows the importance of being transparent
about experiments done on quantum devices. The topology of instances strongly
impacts the quality of the results returned by quantum devices. The coverage
metric quantifies its robustness and can be used to identify classes of instances
producing high-quality results on quantum devices.

3 Conclusion

This paper has introduced the TAQOS benchmark methodology, which fairly
compares classical and quantum heuristics performance. TAQOS is a scalable
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framework of metrics that analyses the trade-offs between quality and robust-
ness. It constitutes a competitive methodology to benchmark hybrid algorithms
such as AQO and the QAOA. It uses field-proven metrics to compare quantum
to classical results obtained with existing benchmark methodologies. This paper
illustrated the application of the TAQOS protocol on the Max-Cut problem in
a favorable context for D-Wave systems and showed that performance reports
should consider instances set coverage to avoid misleading conclusions. The use
case illustrates the ability of TAQOS to gauge the fairness of quantum opti-
mization experiments. In particular, this allows us to separate the experiments
favorable to some quantum hardware from the more generic experiments that
would manifest a real and robust quantum advantage. Future studies will be done
on other optimization problems (especially Higher Order Binary Optimization
problems and the TSP). This future work will provide insight into problems and
instance properties that might benefit from a quantum advantage.
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