
Benchmarking Quantum Annealers with
Near-Optimal Minor-Embedded Instances

Valentin Gilbert
Université Paris-Saclay

CEA, List, F-91120
Palaiseau, France

valentin.gilbert@cea.fr

Julien Rodriguez
Université de Montpellier

LIRMM, CNRS
Montpellier, France

julien.rodriguez@lirmm.fr

Stéphane Louise
Université Paris-Saclay

CEA, List, F-91120
Palaiseau, France

stephane.louise@cea.fr

Abstract—Benchmarking Quantum Process Units (QPU) at
an application level usually requires considering the whole
programming stack of the quantum computer. One critical
task is the minor-embedding (resp. transpilation) step, which
involves space-time overheads for annealing-based (resp. gate-
based) quantum computers. This paper establishes a new protocol
to generate graph instances with their associated near-optimal
minor-embedding mappings to D-Wave Quantum Annealers
(QA). This set of favorable mappings is used to generate a wide
diversity of optimization problem instances. We use this method
to benchmark QA on large instances of unconstrained and
constrained optimization problems and compare the performance
of the QPU with efficient classical solvers. The benchmark aims
to evaluate and quantify the key characteristics of instances that
could benefit from the use of a quantum computer. In this context,
existing QA seem best suited for unconstrained problems on
instances with densities less than 10%. For constrained problems,
the penalty terms used to encode the hard constraints restrict
the performance of QA and suggest that these QPU will be less
efficient on these problems of comparable size.

Index Terms—Benchmark, Quantum Annealer, Optimization,
QUBO, Ising model, maxcut, maximum independent set

I. INTRODUCTION

The past five years have seen the rise of quantum computers
with successfully implemented quantum supremacy experi-
ments. These experiments were demonstrated with supercon-
ducting qubits [1] and with photonic qubits [2], [3]. More
recently, D-Wave claimed that their QA reached quantum
supremacy [4]. These demonstrations constitute strong exper-
imental steps towards achieving a useful quantum advantage
but are insufficient to demonstrate the utility of quantum com-
puters to solve real-world and useful problems. Combinatorial
optimization problems constitute a set of relevant problems to
evaluate the potential quantum advantage that could be brought
by Noisy Intermediate Scale Quantum (NISQ) process units.
The Q-Score is an example of an application-oriented protocol
designed to benchmark QPU using random max-cut instances
based on Erdős-Rényi graphs [5]. Several frameworks have
been recently designed to benchmark annealing-based and
gate-based models in a holistic way [6]. One example is the
QUARK framework, which explores real industrial use cases
[7]. Various national and international initiatives are develop-
ing application-oriented frameworks, including the QED Con-
sortium [8] and the BACQ project [9]. These frameworks are

completed with attempts to quantify the coverage of instance
sets to gauge the fairness of a benchmark experiment [10],
[11]. Recent studies gather specific instance sets designed to
benchmark quantum computers, such as HamLib [12], which
proposes various encodings of Hamiltonians for optimization
problems and condensed matter models. The MQTBench
library [13] establishes a database of quantum circuits that can
be used for gate-based QPU. One can also rely on previously
developed reference libraries of problems used for classical
computers, such as MQLib [14] and QPLib [15]. The reader
can refer to a recent survey done on this subject [16].

The methods described above are based on the same execu-
tion scheme: an input instance is defined and a preprocessing
routine is used to map the problem on the QPU. This task is
called the compilation or transpilation for gate-based quantum
computers. It converts the original gate set to a physically
realizable gate set and adds SWAP gates to compensate for
the limited interconnects of the quantum chip. For QA such
as D-Wave Systems [17], the preprocessing step consists of
finding a transformation that maps each problem’s variable
to a set of physical variables that can be straightly encoded
to the physical qubits of the quantum annealer. This task is
called minor-embedding [18]. Transpilation, as well as minor-
embedding tasks, are hard for classical computers and directly
impact the quality of the solutions provided by the QPU.

A second approach uses sets of crafted instances to bench-
mark the QPU [16]. These instances are designed to reduce
the impact of the preprocessing step and constitute friendly
use cases for the QPU but remain hard for classical optimizers.
Table I shows recent experiments led on D-Wave QA using
this type of instance. Each experiment shows that QA can
excel at solving specific sets of instances compared to classical
solvers. These instances have two common features: they have
many variables and are almost always subgraphs of the qubit
layout, which avoids using extra qubits to embed the problem
on the quantum chip. Crafted instances have been used to
compare IBM gate-based QPU to D-Wave QA, leading to the
superiority of QA for solving optimization problems [19].

This paper provides a new method to create large sets of
crafted instances that are near-optimally mapped on a given
QPU. Our study mainly focuses on QA, the most mature
quantum technology able to approximate large optimization

TABLE I
RELATED WORK USING CRAFTED INSTANCE SETS TO DEMONSTRATE THE PERFORMANCE OF D-WAVE QUANTUM ANNEALERS.

Source Instance type Instance topology #Variables #Qubits Tested QPU Minor-Embedding Classical solvers
[20] (2021) BFM∗, FBFM∗, CBFM∗ Chimera graph 2032 2032 2000Q QPU chip sub-graph Global & local search
[21] (2022) CBFM∗-P Pegasus graph 5387 5387 Advantage System4.1 QPU chip sub-graph Global & local search
[22] (2023) Unweighted Max-cut 3-regular graph 4-320 4-320 Advantage System4.1 QPU chip sub-graph Exact solver

[4] (2024) 2D & 3D Ising
spin glass

square, cubic,
diamond, biclique 16-567 16-576 Advantage System4.1

and Advantage2
QPU chip sub-graph

2 qubits/var (biclique) Exact solver
∗BFM, FBFM and CBFM respectively relates to Biased Ferromagnet, Frustrated Biased Ferromagnet and Corrupted Biased Ferromagnet Ising models.

problems. However, our method can be extended to benchmark
gate-based QPU. The creation of the instance set is designed
in a reverse fashion: At first, a near-optimal mapping of a
complete graph (source graph) on the quantum chip (target
graph) is found. The mapping function is then iteratively al-
tered to increase the size of the source graph while decreasing
its density. During this process, the target graph is not altered.
The set of source graphs is then used to generate instances of
optimization problems with various densities to benchmark the
performance of QA. Our analysis provides valuable insights
into the characteristics of instances that could potentially lead
to a quantum advantage. Our finding is that despite near-
optimal embeddings, the first generation of D-Wave Advantage
QPUs rapidly struggles to find good solutions for instances
with densities greater than 0.1.

The remainder of the paper is organized as follows: Sec-
tion II introduces the basic notions and notations on quan-
tum annealing and minor-embedding. Section III presents the
method used to create the crafted instances and the technical
settings of the experiment. Section IV benchmarks the QPU
against classical solvers and discusses the results.

II. NOTATIONS AND DEFINITIONS

Quantum annealers, such as D-Wave systems, constitute a
noisy version of the universal adiabatic quantum computer
[23]. The evolution of these systems is based on the interpola-
tion of a mixing Hamiltonian HM whose ground state is easy
to prepare and a problem Hamiltonian HP whose ground state
encodes the solution to the problem. The problem Hamiltonian
can be fully specified with a source graph Gs = (Vs, Es):

HP =
∑
v∈Vs

hvσ
z
v +

∑
(u,v)∈Es

Juvσ
z
uσ

z
v (1)

where σz
i denotes the Pauli Z operator on variable i. The

ground state of Hp encodes the solution to the problem:

minC(s) =
∑
v∈Vs

hvsv +
∑

(u,v)∈Es

Juvsusv (2)

where si ∈ {−1,+1}. A Quadratic Unconstrained Binary
Optimization (QUBO) cost function with variables xi ∈ {0, 1}
is translated to an Ising cost function (2) using a variable
substitution xi =

1+si
2 . When a graph Gs cannot be straightly

mapped to the qubits of the quantum chip due to connectivity
limitations, one has to find a mapping function that maps the
source graph Gs to a target graph Gt = (Vt, Et) where Gt is
defined as a subgraph of the quantum chip’s graph Gt QPU.

This problem is well-defined in the theory of graph minors
[24] and is formally stated as:

Find a function ϕ : Vs −→ P(Vt) such that :
1) each vertex v ∈ Vs is mapped onto a connected subgraph

ϕ(v) of Gt. Gt is a subgraph of Gt QPU.
2) each connected subgraph must be vertex disjoint ϕ(v)∩

ϕ(v′) = ∅, with v ̸= v′.
3) each edge (u, v) ∈ Es is mapped onto at least one

edge in Et : ∀(u, v) ∈ Es,∃u′ ∈ ϕ(u),∃v′ ∈
ϕ(v), such that (u′, v′) ∈ Et.

Let nϕ be the number of nodes used in Gt to embed the graph
Gs. A coupling strength is set to each edge of each connected
subgraph ϕ(v) to maintain ferromagnetic couplings between
the physical qubits, which act as a single logical variable. In
this paper, we refer to v ∈ Vs as logical qubits or logical nodes
(equivalent to logical variables). We refer to v ∈ Vt as physical
qubits or physical nodes. Each logical node is mapped to a set
of physical nodes ϕ(v). The density of a graph Gs is defined
as d = 2|Es|

|Vs|(|Vs|−1) .
Two different types of algorithms are mainly used to find the

function ϕ. The first set of algorithms takes as input both Gs

and Gt QPU. One implementation is the CMR heuristic [25],
which has the advantage of working with any graph Gt QPU.
The second set of algorithms takes as input a complete graph
Gs and is designed for specific Gt QPU. These algorithms
usually take advantage of the structure of Gt QPU and produce
mappings that are near-optimal for complete graphs. For
example, the CME heuristic [26] finds high-quality mappings
of complete graphs for D-Wave quantum chips, leveraging the
regular structure of the chip and considering inoperable qubits.

III. METHOD

A. Assessing the Quality of an Embedding

This work only considers the number of physical qubits as
the embedding quality criteria. The quality of an embedding
can be further refined but remains complex to assess [27].
The minimum number of physical nodes required to embed a
source graph Gs can be lower bounded. Even if not reachable
in practice, this lower bound gives an idea of the quality of the
embedding found and the distance to an optimal embedding.
Let nϕ(v)∗ be a lower bound on the optimal number of nodes
required to embed a node v ∈ Vs on the target graph. We
assume Gt QPU has a regular topology and define cphys as
the number of edges per node, which is constant for D-Wave
topologies, e.g., cphys = 15 for Pegasus topology. If ϕ(v)∗

maps v ∈ Vs to a path (this structure maximizes the potential

connectivity of ϕ(v)∗), the node v requires at least nϕ(v)∗

nodes to be embedded on the target graph Gt:

nϕ(v)∗ =


1 if deg(v) ≤ cphys

2 if cphys < deg(v) ≤ (2cphys − 2)⌈
deg(v)−(2cphys−2)

cphys−2

⌉
+ 2 otherwise

 . (3)

The number of nodes used in the target graph to embed Gs is
then nϕ ≥

∑
v∈Vs

nϕ(v)∗ . This bound is then used to define
an overhead ratio ro that computes the overhead of physical
qubits used by the mapping function:

ro =
nϕ∑

v∈Vs
nϕ(v)∗

. (4)

The closer the ratio ro is to 1, the better. We use this metric
to show that our instance generation process creates near-
optimally embedded instances.

B. Near-optimal Mapping Generation

Fig. 1 shows the workflow creating graph instances near-
optimally embedded on the D-Wave quantum chip. The first
step consists of finding the mapping function of a complete
graph Gs to a target graph Gt that is a subgraph of Gt QPU.
The CME algorithm finds such mapping (see Fig. 1a). Each
logical node v ∈ Vs is mapped to a connected subgraph
ϕCME(v) on the D-Wave chip, which topology is represented
by the graph Gt QPU. One special feature is that the CME
algorithm generates subgraphs ϕCME(v) that are paths to
maximize the potential connectivity of each logical qubit
ϕCME(v). It is then possible to increase the size of the logical
graph Gs by selecting and splitting a random path ϕCME(v)
in two equal parts (see Fig. 1b and c). The new source graph
G′

s = (V ′
s , E

′
s) has a lower density than Gs, but an additional

node owing to the split. This last step is repeated to create
arbitrarily dense source graphs G′

s, preserving the near-optimal
embedding clause in the new mapping function ϕnopt(v). As
the number of iterations increases, the Graph Edit Distance
(GED) between G′

s and Gt shrinks, meaning that the topology
of G′

s becomes closer to the topology of Gt. It is important to
notice that the set of nodes Vt of Gt is defined by the CME
method at the beginning and remains fixed during the steps that
generate the different instances G′

s. Hence, all the instances G′
s

use the same physical graph Gt. Only the mapping function
ϕnopt varies between each graph G′

s. The generated graphs G′
s

that are very sparse are considered favorable to the quantum
computer as they have many logical variables, each mapped to
very few or only one physical qubit. On the contrary, graphs
G′

s with high density have each vertex v mapped to long
chains of physical qubits ϕnopt(v). It suggests that this type
of instance is less favorable to the quantum annealer and will
be more easily solved by classical computers.

We evaluate the efficiency of our method using a complete
graph of size n = 100. The CME method finds the mapping
function of the complete graph Gs to D-Wave Advantage6.4,
using 982 physical qubits. The method described in the

Gs = (Vs, Es) Gt = (Vt, Et)

a)

b)

c)

G'
s = (V'

s, E
'
s)

ϕCME

ϕnopt

Fig. 1. Instance generation with iterative chain split. a) The algorithm starts
with a complete graph embedding using CME method on the graph Gt QPU.
Each node in the source graph Gs is mapped to a chain in the target graph
Gt. b) A random logical node v ∈ Vs is selected. c) The corresponding chain
ϕCME(v) is split into two parts to create a new logical node in the source
graph. It changes the mapping function to ϕnopt. Steps b. and c. are repeated
on G′

s until the desired density in the logical graph is reached.

previous section is used to generate source graphs G′
s of

diverse densities d ∈ {0.9, 0.8, ..., 0.1} with their associated
near-optimal mapping ϕnopt. For each source graph G′

s, the
CMR method is run 100 times with a time limit set to 5
minutes to find a second mapping ϕ100 CMR that uses the least
number of nodes in Gt QPU. Fig. 2a compares the ratio ro for
each mapping (ϕnopt and ϕ100 CMR). It clearly shows that
ϕnopt mappings use a number of nodes close to the optimal
bound defined in (3). The mappings ϕ100 CMR use more nodes
that ϕnopt for every instances. The worst case behavior of
ϕ100 CMR is on sparse instances, whereas ϕnopt produces
embeddings that can be considered near-optimal. We then use
the graphs G′

s to create max-cut instances and compute the
ratio of cut sizes obtained using each mapping ϕnopt and
ϕ100 CMR with D-Wave Advantage6.4. Fig. 2b shows that
the best-cut size is increased when using the mapping ϕnopt

instead of the mapping ϕ100 CMR. It confirms that in addition
to using fewer qubits, the mappings found by our method
increase the performance of the D-Wave Advantage6.4.

C. Instance Set

In the rest of the paper, we generate instances from a
complete graph of size n = 174. It is the largest clique that

cu
t

si
ze

 (
ϕ

n
o
p
t)

 /
 c

u
t

si
ze

 (
ϕ

1
0

0
_C

M
R
)

b)

ϕnopt

ϕ100_CMR

a)

Fig. 2. Performance comparison of mapping functions found by our method
ϕnopt and the best among 100 tries of CMR method ϕ100 CMR. 30 instances
are generated for each density. a) Comparison using the overhead ratio (see
(4)). Error bars show the standard deviations b) Ratio of the best cut size
obtained for each mapping for each instance.

can be embedded with the CME method on Advantage6.4,
using 2918 physical qubits, representing approximately 52%
of the physical working qubits of the chip. Using the method
described above, we generate graphs of various densities G′

s

with their associated near-optimal mapping ϕnopt on Advan-
tage6.4 (see Table II for instances properties). The source
graphs G′

s are then used to create instances of three different
optimization problems with 30 instances for each density.
The two first problems are unweighted and weighted max-cut
problems defined as:

minC(s) =
∑

(u,v)∈E′
s

Juvsusv (5)

where su, sv ∈ {−1,+1}. Juv = 1 for unweighted max-cut
and Juv ∈ {−128

128 , ...,−
1

128 ,
1

128 , ...,
128
128} for weighted max-

cut. Weights are used to challenge the precision and long-range
coherence of the QPU. The precision is the same as in [4].
The third problem is a weighted Maximum Independent Set
(MIS) defined by the cost function:

minC(x) = −
∑
v∈V ′

s

ωvxv +
∑

(u,v)∈E′
s

ωuvxuxv (6)

where xu, xv ∈ {0, 1}, ωv ∈ { 1
128 , ...,

128
128} and ωuv = 2. ωuv

acts as the penalty term used to enforce the hard constraints
for D-Wave and Tabu Search (TS).

D. Solver Settings

1) Advantage6.4 settings: The performance of the quantum
annealer is evaluated using an access time limit of 1 second.
Each instance is mapped on the QPU using the mapping
ϕnopt. Fig. 3 shows the repartition of the processing time con-
sidering different annealing times {1, 10, 100, 1000}µs with
respectively {5000, 4780, 3310, 820} shots. Fig. 4 shows the
performance of D-Wave considering different values of an-
nealing time for each problem. The optimal annealing time
is instance-dependent and cannot be estimated before running
the annealing process in a noisy context. For each problem, we

TABLE II
PROPERTIES OF G′

s GRAPHS USED TO BUILD OPTIMIZATION PROBLEM
INSTANCES. THESE GRAPHS ARE MAPPED ON 2918 QUBITS.

Density Avg |V ′
s | ro Density Avg |V ′

s | ro
0.02 1318 1.06 0.1 565 1.14
0.03 1062 1.08 0.2 395 1.16
0.04 912 1.10 0.3 321 1.17
0.05 810 1.11 0.4 277 1.18
0.06 737 1.12 0.5 248 1.19
0.07 680 1.12 0.6 226 1.19
0.08 635 1.13 0.7 209 1.19
0.09 597 1.13 0.8 195 1.20

0.9 184 1.20

select a fixed annealing time that produces the best results on
average for low (0.02), medium (0.5) and high (0.9) densities.
Therefore, we choose 1µs and 5000 shots for unweighted
max-cut, 1000µs and 820 shots for weighted max-cut and
1µs and 5000 shots for weighted MIS problems. The D-
Wave uniform torque compensation method is used to set the
ferromagnetic couplings between the physical qubits ϕnopt(v).
The weight associated with a single qubit hv is uniformly
spread over the physical qubits ϕnopt(v). The same method
is used for edges. A majority vote is used to unembed the
problem. We do not use annealing offset or spin reversal
methods. MIS instances are post-processed to avoid constraint
violations. We iteratively and randomly select edges that
violate the constraint and only keep the node with the higher
weight in the independent set. The benchmark is done using
the best solution found among all shots for each instance.

2) Tabu Search settings: The TS algorithm [28] is run
directly on the instance associated with the source graph G′

s.
The processing time limit is set to 1s and the tenure length
is set to |V ′

s |/4. The TS uses a single processor core AMD
EPYC 7702P. MIS instances are post-processed with the same
method used for D-Wave.

3) Gurobi settings: Gurobi [29] is run with a time limit
of 60s. It establishes a reference solution with which the TS

(5000 shots) (4780 shots) (3310 shots) (820 shots)

ti
m

e
 (

s)

1 μs 10 μs 100 μs 1000 μs

Fig. 3. QPU access time repartition for different annealing times per shot with
a total running time limit of 1s. Each color represents the fraction of time
used for programming the QPU, annealing the n shots, reading the results of
the n shots, and delays between the n shots.

Density = 0.02 Density = 0.5 Density = 0.9

a)

b)

c)

Fig. 4. Annealing time scan with a quantum processing time limit of 1s
for three types of problems with various densities. a) Unweighted maxcut
instances b) Weighted maxcut instances c) Weighted MIS.

and D-Wave are compared. The solver is set with default
parameters. The solver is run on the instance associated with
the source graph G′

s. For the MIS problem, the constraints are
directly encoded with inequalities instead of penalties. Gurobi
is parallelized on 20 cores of a processor AMD EPYC 7702P.

4) Random solver settings: A random solver is used on
MIS instances. It iteratively and randomly selects a node in
the set V ′

s and removes from V ′
s all the neighbors of this node.

This method generates the same number of solutions generated
by D-Wave, i.e., 5000 solutions. The best MIS is then selected
among these shots. We did not use this method for the max-
cut problem as random solution cuts are far from competitive
with D-Wave and TS solutions.

IV. RESULTS AND DISCUSSION

We compare the performance of D-Wave Advantage6.4
against classical solvers to approximate solutions of optimiza-
tion problems introduced in the previous section. Table II
shows the average number of logical variables for each density
processed in Fig. 5. We recall that the density of the graph is
inversely proportional to the number of variables in the graph
G′

s. The results of D-Wave and the TS are expressed as a
ratio of a reference solution computed with Gurobi with a
runtime limit set to 60s. In general, D-Wave performs well
with respect to TS on sparse instances under 0.1 density.
Under this density, the logical problem has more than 565
variables, which limits the performance of the TS due to the
large size of the solution space. We observed that the TS did

not have sufficient processing time for large instances, leading
to almost random solutions for these instances. It explains
why the box plots are stretched for TS for small densities.
The second reason that can explain the nice performance of
the QA for small density instances is that the GED between
G′

s and Gt shrinks as G′
s density decreases (i.e., G′

s topology
becomes close to G′

t topology). It denotes instances favorable
to the quantum computer, with only a few variables mapped to
several physical qubits. For very sparse instances (d < 0.03),
the Advantage6.4 outperforms Gurobi on few instances of
unweighted and weighted max-cut, showing that the QPU
may be useful against classical methods for very sparse but
large instances with a GED close to Gt. Denser instances
become easier for classical solvers as the search space reduces
exponentially with density but stays approximately the same
for the QPU as the number of physical qubits remains the same
due to the embedding. In addition, long chains of physical
qubits increase the rate of chain breaks. Increasing the strength
of ferromagnetic couplings can prevent this issue, but it also
adds extra energy to the system and can induce the rescaling
of Hamiltonian weights due to the finite programming range
of each coupler, which challenges the precision of the QPU.
TS and QA do not seem adapted to approximate solutions
to constrained problems such as MIS. In this benchmark,
these methods cannot compete with the random solver used
to generate maximal independent sets. We observed that for
almost all instances, the TS and QA produced solutions
that violate the independent set constraint (encoded as soft
constraints in the cost function with penalty terms). Instead,
Gurobi is efficient for this problem as the constraints encoded
with inequalities ease the branch and bound resolution.

Several points have to be clarified and considered carefully
to avoid misleading conclusions. The aim of this benchmark
is not to study the scaling of the QPU but rather to determine
when the quantum computer performs best at solving instances
that use the same physical requirements (in our case, the
number of physical qubits). The settings of this experiment
only involved tuning the annealing time, which has a huge
impact when working on time-limited tasks. We did not want
to include other complex parameter optimization such as the
advanced tuning of the chain strength [30]–[32], annealing
schedules [33], [34] or advanced calibration methods called
shimming [35]. The main idea of our study is to provide
an objective view of D-Wave’s average performance without
employing complex preprocessing methods. Nevertheless, the
study of the trade-offs brought by these methods represents
a relevant perspective for future work. The parameters of the
classical heuristics can be further optimized, and more specific
algorithms can be used (see [36] for sparse maxcut instances).

The minor-embedding task is a step that is usually ex-
cluded from quantum benchmark studies, which almost only
consider the pure annealing time without considering delays,
readouts and programming time. A huge amount of classical
preprocessing time can be spent to optimize the mapping
function, making comparing existing studies difficult. Instead,
our approach permits the evaluation of the QPU on near-

a)

b)

c)

Fig. 5. Benchmark of D-Wave Advantage6.4 and TS (1s time limit) expressed as ratios of a reference solution found by Gurobi in 60s. Each instance’s size
is provided in Table II. Boxes extend from Q1 (quartile) to Q3 with a line at the median. Whiskers are delimited by the farthest data point lying within 1.5x
the inter-quartile range and flier points are data points beyond the whiskers. a) Unweighted max-cut b) Weighted max-cut c) MIS with a random solver.

optimally mapped instances, giving insights into the properties
that leverage the power of QA.

To conclude the discussion, this benchmark methodology
is not fair and representative of the performance of D-Wave
systems’ ability to solve real-world instances. It rather acts
as a performance evaluation of D-Wave systems’ ability to
solve large optimization instances based on an ideal mapping
of the instance on the QPU, using QA default settings. This
methodology could be used to detect optimization problems
that could benefit from a quantum advantage.

V. CONCLUSION

This article introduced a new method to create source graphs
of various densities near-optimally mapped on a QA. This
set of graphs was then used to generate large optimization
problem instances to benchmark D-Wave QPU against clas-
sical solvers. Considering an equal processing time limit of
1s, the QPU was competitive with TS for instances with
densities inferior to 0.1 on the weighted max-cut problem. It

even outperformed Gurobi solver on some really sparse max-
cut instances, whereas Gurobi had 60 times the processing
time of D-Wave QPU. Conversely, the QPU seemed less
efficient at approximating similar-sized constrained problems.
It is important to remember that this set of crafted instances
is very favorable and specifically designed for D-Wave QA,
especially when the instances are very sparse. Our results can
be seen as the benchmark of the default behavior of D-Wave
QPU on large instances of ideal shape. For real instances, the
mapping function found by embedding methods such as CMR
will not be as efficient as the one designed in this paper.

A relevant perspective is to study other optimization prob-
lems using this methodology to build the instance set. It could
also be used to evaluate the benefits of advanced preprocessing
methods of quantum annealers. Finally, this methodology can
be adapted to benchmark variational quantum algorithms on
gate-based quantum computers, considering the generation of
instances with optimal planted swapping networks.

REFERENCES

[1] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a
programmable superconducting processor,” Nature, vol. 574, no. 7779,
p. 505–510, 2019.

[2] H.-S. Zhong, H. Wang, Y.-H. Deng, et al., “Quantum computational
advantage using photons,” Science, vol. 370, no. 6523, pp. 1460–1463,
2020.

[3] L. S. Madsen, F. Laudenbach, M. F. Askarani, et al., “Quantum com-
putational advantage with a programmable photonic processor,” Nature,
vol. 606, no. 7912, p. 75–81, 2022.

[4] A. D. King, A. Nocera, M. M. Rams, et al., “Computational supremacy
in quantum simulation,” arXiv preprint arXiv:2403.00910, 2024.

[5] S. Martiel, T. Ayral, and C. Allouche, “Benchmarking quantum copro-
cessors in an application-centric, hardware-agnostic, and scalable way,”
IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–11, 2021.

[6] D. Mills, S. Sivarajah, T. L. Scholten, and R. Duncan, “Application-
motivated, holistic benchmarking of a full quantum computing stack,”
Quantum, vol. 5, p. 415, 2021.

[7] J. R. Finžgar, P. Ross, L. Hölscher, et al., “Quark: A framework for quan-
tum computing application benchmarking,” in 2022 IEEE international
conference on quantum computing and engineering (QCE), pp. 226–237,
IEEE, 2022.

[8] T. Lubinski, S. Johri, P. Varosy, et al., “Application-oriented performance
benchmarks for quantum computing,” IEEE Transactions on Quantum
Engineering, 2023.

[9] F. Barbaresco, L. Rioux, C. Labreuche, et al., “Bacq–application-
oriented benchmarks for quantum computing,” arXiv preprint
arXiv:2403.12205, 2024.

[10] T. Tomesh, P. Gokhale, V. Omole, et al., “Supermarq: A scalable
quantum benchmark suite,” in 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 587–603, IEEE,
2022.

[11] V. Gilbert, S. Louise, and R. Sirdey, TAQOS: A Benchmark Protocol
for Quantum Optimization Systems, p. 168–176. Springer Nature
Switzerland, 2023.

[12] N. P. Sawaya, D. Marti-Dafcik, Y. Ho, et al., “Hamlib: A library
of hamiltonians for benchmarking quantum algorithms and hardware,”
in 2023 IEEE International Conference on Quantum Computing and
Engineering (QCE), vol. 2, pp. 389–390, IEEE, 2023.

[13] N. Quetschlich, L. Burgholzer, and R. Wille, “Mqt bench: Benchmarking
software and design automation tools for quantum computing,” Quan-
tum, vol. 7, p. 1062, 2023.

[14] I. Dunning, S. Gupta, and J. Silberholz, “What works best when? a
systematic evaluation of heuristics for max-cut and qubo,” INFORMS
Journal on Computing, vol. 30, no. 3, p. 608–624, 2018.

[15] F. Furini, E. Traversi, P. Belotti, et al., “Qplib: a library of quadratic pro-
gramming instances,” Mathematical Programming Computation, vol. 11,
no. 2, p. 237–265, 2018.

[16] A. Abbas, A. Ambainis, B. Augustino, et al., “Quantum optimiza-
tion: Potential, challenges, and the path forward,” arXiv preprint
arXiv:2312.02279, 2023.

[17] “D-wave system. solver properties and parameters.” https://docs.
dwavesys.com/docs/latest/doc solver ref.html [Accessed 20-04-2024].

[18] V. Choi, “Minor-embedding in adiabatic quantum computation: I. the
parameter setting problem,” Quantum Information Processing, vol. 7,
pp. 193–209, 2008.

[19] E. Pelofske, A. Bärtschi, and S. Eidenbenz, “Quantum annealing vs.
qaoa: 127 qubit higher-order ising problems on nisq computers,” in
International Conference on High Performance Computing, pp. 240–
258, Springer, 2023.

[20] Y. Pang, C. Coffrin, A. Y. Lokhov, and M. Vuffray, “The potential
of quantum annealing for rapid solution structure identification,” Con-
straints, vol. 26, no. 1, pp. 1–25, 2021.

[21] B. Tasseff, T. Albash, Z. Morrell, et al., “On the emerging potential
of quantum annealing hardware for combinatorial optimization,” arXiv
preprint arXiv:2210.04291, 2022.

[22] T. Lubinski, C. Coffrin, C. McGeoch, et al., “Optimization ap-
plications as quantum performance benchmarks,” arXiv preprint
arXiv:2302.02278, 2023.

[23] T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Reviews
of Modern Physics, vol. 90, no. 1, p. 015002, 2018.

[24] N. Robertson and P. Seymour, “Graph minors .xiii. the disjoint paths
problem,” Journal of Combinatorial Theory, Series B, vol. 63, no. 1,
p. 65–110, 1995.

[25] J. Cai, W. G. Macready, and A. Roy, “A practical heuristic for finding
graph minors,” arXiv preprint arXiv:1406.2741, 2014.

[26] T. Boothby, A. D. King, and A. Roy, “Fast clique minor generation in
chimera qubit connectivity graphs,” Quantum Information Processing,
vol. 15, pp. 495–508, 2016.

[27] V. Gilbert and J. Rodriguez, “Discussions about high-quality embeddings
on Quantum Annealers,” in EU/ME meeting, (Troyes, France), 2023.

[28] G. Palubeckis, “Multistart tabu search strategies for the unconstrained
binary quadratic optimization problem,” Annals of Operations Research,
vol. 131, no. 1–4, p. 259–282, 2004.

[29] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023.

[30] V. Gilbert and S. Louise, “Quantum annealers chain strengths: A simple
heuristic to set them all,” arXiv preprint arXiv:2404.05443, 2024.

[31] D. Willsch, M. Willsch, C. D. Gonzalez Calaza, et al., “Benchmarking
advantage and d-wave 2000q quantum annealers with exact cover
problems,” Quantum Information Processing, vol. 21, no. 4, p. 141,
2022.

[32] T. V. Le, M. V. Nguyen, T. N. Nguyen, et al., “Benchmarking chain
strength: An optimal approach for quantum annealing,” in 2023 IEEE
International Conference on Quantum Computing and Engineering
(QCE), IEEE, 2023.

[33] J. I. Adame and P. L. McMahon, “Inhomogeneous driving in quantum
annealers can result in orders-of-magnitude improvements in perfor-
mance,” Quantum Science and Technology, vol. 5, no. 3, p. 035011,
2020.

[34] M. Khezri, X. Dai, R. Yang, et al., “Customized quantum annealing
schedules,” Physical Review Applied, vol. 17, no. 4, 2022.

[35] K. Chern, K. Boothby, J. Raymond, et al., “Tutorial: Calibration refine-
ment in quantum annealing,” arXiv preprint arXiv:2304.10352, 2023.

[36] D. Rehfeldt, T. Koch, and Y. Shinano, “Faster exact solution of sparse
maxcut and qubo problems,” Mathematical Programming Computation,
vol. 15, no. 3, p. 445–470, 2023.

https://docs.dwavesys.com/docs/latest/doc_solver_ref.html
https://docs.dwavesys.com/docs/latest/doc_solver_ref.html

	Introduction
	Notations and definitions
	Method
	Assessing the Quality of an Embedding
	Near-optimal Mapping Generation
	Instance Set
	Solver Settings
	Advantage6.4 settings
	Tabu Search settings
	Gurobi settings
	Random solver settings

	Results and Discussion
	Conclusion
	References

