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 Different approaches to benchmark quantum computers:
 Component-level benchmarks (e.g. state tomography [1], operation fidelity assessment [2])
 System-level benchmarks (e.g. QV [3], Cycle benchmarking [4] ...)
 Application-level benchmarks (e.g. QED-C [5], Q-score [6] ….)

 Benchmarking Quantum Computers is difficult:
 Quantum Computers are hybrid by design. The specification of each process requires 

transparency: 
 Compilation process and pre-processing time
 Quantum Computer parameter settings
 Error mitigation methods

I- Context & Motivations

Do not compile away the 
complexity of the problem
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 Classification of model-independent benchmark instances A. Abbas et al. [12]

I- Context & Motivations

Random instances :
+ Generate large sets of instances
- Relevance of the set can be 
debated
- Phase transition issue for some 
instances

Crafted instances :
+ Easy to find instances hard for classical 
solvers
- Some classical methods may take 
advantage of the structure of the instance 

Real-world instances :
+ Ideal targets
- Hard to design due to 
quantum hardware dimensionality
- Hard to find by nature (selection
bias)

Application benchmark instances

Source Instance type Instance topology #Variables QPU Embedding

2021 [13] BFM, FBFM, CBFM Chimera graph 2032 2000Q QPU chip sub-graph

2022 [14] CBFM-P Pegasus graph 5387 Adv4.1 QPU chip-subgraph

2023 [15] Unweighted max-cut 3-regular graph 4-320 Adv4.1 QPU chip-subgraph

2024 [16] 2D & 3D ising sping 
glass

Square, cubic,
Diamond, biclique

16-567 Adv4.1
Adv2

QPU chip-subgraph
2qubits/var
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I- Context & Motivations
 Aim of our benchmark protocol (adapted to D-Wave QA [7]):

 Evaluate the performance of Quantum Annealers on instances of gradual difficulty (near-optimally 
embedded).

 Find classes of optimization problems for which QA might be efficient.
 Evaluate the performance of QA according to its major bottleneck, i.e., matrix density.
 Build crafted instances of increasing difficulty (in terms of density) 

 Our protocol helps to:
 Identify classes of optimization problem for 

which QA may be efficient
 Evaluate QA performance in an ideal 

compilation case (best-case behavior)
 Compare the performance of QA with 

classical algorithms

 Our protocol does not help to:
 Assert that QA > classical heuristics
 Fairly compare different quantum 

computers performance
 Finely characterize the source of QA 

performance
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II- Background – An optimization problem on QA
 D-Wave QA Hamiltonian

2

Constraint released in 
the cost function

Substitute variables                 to build the Ising cost function 

The ground sate of         encodes the solution to the problem 

1

5

34

 Maximum independent set problem

 Cost function
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II- Background - Minor-embedding
 Minor-embedding (Graph Minor Theory [8])

 Set of rules:

v1 v2

v3v4

v5

?
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II- Background
 Minor-embedding Method

 Near-Optimal CME (Clique Minor Embedding [9] for specific target graphs

(Example with the TRIAD Pattern [10])

 Impact of the minor-embedding:
 Add extra qubits
 Changes the problem Hamiltonian (impact on the quantum evolution and the minimum spectral gap)
 Require the setting of the so-called « chain strength » (maintains the ferromagnetic bound).
 Require extra-processing (e.g. majority voting)
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III- Method - Workflow
1) Classical benchmarking approach 2) Our approach (generation of the 

crafted instances)
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 How to assess the quality of a mapping:
 D-Wave QA has a regular topology

For Pegasus topology:

 Definition of a lower bound on the number of physical qubits used in a mapping:

 Compute the overhead ratio considering this bound:

III- Method – Design of the crafted instances
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 Iterative split method for the creation of near-optimally mapped instances

III- Method – Design of the crafted instances

1) 2)

3)
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 Comparison of the performance of our generation method against state of the art embedding method

III- Method – Design of the crafted instances

Assumption: Instances with less duplicated qubits are more easily solved by QA => Seems to be true
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 Unweighted Max-cut
IV- Results Time windows:

60s: Gurobi   
1s: Tabu Search
1s: D-Wave

 Weighted Max-cut (256 different values for the weights)

Performance intersection with Tabu Search
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 Weighted MIS (128 different values for the weights)

IV- Results Time windows:
60s: Gurobi   
1s: Tabu Search
1s: D-Wave

Performance intersection with random greedy search



14Gilbert Valentin – IEEE Quantum Week 19th September 2024

 This study suggests that:
 At a fixed physical resources (#qubits), the QA seems to perform well for problems that are sparse 

(under 0.1 of density with number of logical variables > 550).

=> it limits the use of QA for dense optimization problems (such as TSP). 
 Soft constraints drastically penalize the QA and Tabu Search.

 The performance results should be considered cautiously:
 The generated instances are very favorable to D-Wave QA (near-optimally embedded).
 Both QA and classical algorithms can be further tuned.

The aim of the benchmark is to identify when the QA performs well with fixed hardware resources.

 Future perspectives
 Analyze how pre and post-processing methods impact the average quality of the result in this frame.
 Extend the approach to the QAOA (with optimized planted swapping networks).
 Identify optimization problems for which the QA performs well.

 

V- Discussion - Perspectives
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 Quality metrics are problem-dependent
 Max-cut problem: The cut size 

 Maximum Independent set problem: The size of the independent set.

 Time measurement
 60s time window for branch & bound algorithm
 1s time window for Tabu Search (C implementation)
 1s time window for D-Wave Q

III- Method - Metrics to measure

(5000 shots) (4780 shots) (3310 shots) (820 shots)
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