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 Different approaches to benchmark quantum computers:
 Component-level benchmarks (e.g. state tomography [1], operation fidelity assessment [2])
 System-level benchmarks (e.g. QV [3], Cycle benchmarking [4] ...)
 Application-level benchmarks (e.g. QED-C [5], Q-score [6] ….)

 Benchmarking Quantum Computers is difficult:
 Quantum Computers are hybrid by design. The specification of each process requires 

transparency: 
 Compilation process and pre-processing time
 Quantum Computer parameter settings
 Error mitigation methods

I- Context & Motivations

Do not compile away the 
complexity of the problem
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 Classification of model-independent benchmark instances A. Abbas et al. [12]

I- Context & Motivations

Random instances :
+ Generate large sets of instances
- Relevance of the set can be 
debated
- Phase transition issue for some 
instances

Crafted instances :
+ Easy to find instances hard for classical 
solvers
- Some classical methods may take 
advantage of the structure of the instance 

Real-world instances :
+ Ideal targets
- Hard to design due to 
quantum hardware dimensionality
- Hard to find by nature (selection
bias)

Application benchmark instances

Source Instance type Instance topology #Variables QPU Embedding

2021 [13] BFM, FBFM, CBFM Chimera graph 2032 2000Q QPU chip sub-graph

2022 [14] CBFM-P Pegasus graph 5387 Adv4.1 QPU chip-subgraph

2023 [15] Unweighted max-cut 3-regular graph 4-320 Adv4.1 QPU chip-subgraph

2024 [16] 2D & 3D ising sping 
glass

Square, cubic,
Diamond, biclique

16-567 Adv4.1
Adv2

QPU chip-subgraph
2qubits/var
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I- Context & Motivations
 Aim of our benchmark protocol (adapted to D-Wave QA [7]):

 Evaluate the performance of Quantum Annealers on instances of gradual difficulty (near-optimally 
embedded).

 Find classes of optimization problems for which QA might be efficient.
 Evaluate the performance of QA according to its major bottleneck, i.e., matrix density.
 Build crafted instances of increasing difficulty (in terms of density) 

 Our protocol helps to:
 Identify classes of optimization problem for 

which QA may be efficient
 Evaluate QA performance in an ideal 

compilation case (best-case behavior)
 Compare the performance of QA with 

classical algorithms

 Our protocol does not help to:
 Assert that QA > classical heuristics
 Fairly compare different quantum 

computers performance
 Finely characterize the source of QA 

performance
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II- Background – An optimization problem on QA
 D-Wave QA Hamiltonian

2

Constraint released in 
the cost function

Substitute variables                 to build the Ising cost function 

The ground sate of         encodes the solution to the problem 

1

5

34

 Maximum independent set problem

 Cost function
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II- Background - Minor-embedding
 Minor-embedding (Graph Minor Theory [8])

 Set of rules:

v1 v2

v3v4

v5

?
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II- Background
 Minor-embedding Method

 Near-Optimal CME (Clique Minor Embedding [9] for specific target graphs

(Example with the TRIAD Pattern [10])

 Impact of the minor-embedding:
 Add extra qubits
 Changes the problem Hamiltonian (impact on the quantum evolution and the minimum spectral gap)
 Require the setting of the so-called « chain strength » (maintains the ferromagnetic bound).
 Require extra-processing (e.g. majority voting)
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III- Method - Workflow
1) Classical benchmarking approach 2) Our approach (generation of the 

crafted instances)
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 How to assess the quality of a mapping:
 D-Wave QA has a regular topology

For Pegasus topology:

 Definition of a lower bound on the number of physical qubits used in a mapping:

 Compute the overhead ratio considering this bound:

III- Method – Design of the crafted instances
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 Iterative split method for the creation of near-optimally mapped instances

III- Method – Design of the crafted instances

1) 2)

3)
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 Comparison of the performance of our generation method against state of the art embedding method

III- Method – Design of the crafted instances

Assumption: Instances with less duplicated qubits are more easily solved by QA => Seems to be true
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 Unweighted Max-cut
IV- Results Time windows:

60s: Gurobi   
1s: Tabu Search
1s: D-Wave

 Weighted Max-cut (256 different values for the weights)

Performance intersection with Tabu Search
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 Weighted MIS (128 different values for the weights)

IV- Results Time windows:
60s: Gurobi   
1s: Tabu Search
1s: D-Wave

Performance intersection with random greedy search
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 This study suggests that:
 At a fixed physical resources (#qubits), the QA seems to perform well for problems that are sparse 

(under 0.1 of density with number of logical variables > 550).

=> it limits the use of QA for dense optimization problems (such as TSP). 
 Soft constraints drastically penalize the QA and Tabu Search.

 The performance results should be considered cautiously:
 The generated instances are very favorable to D-Wave QA (near-optimally embedded).
 Both QA and classical algorithms can be further tuned.

The aim of the benchmark is to identify when the QA performs well with fixed hardware resources.

 Future perspectives
 Analyze how pre and post-processing methods impact the average quality of the result in this frame.
 Extend the approach to the QAOA (with optimized planted swapping networks).
 Identify optimization problems for which the QA performs well.

 

V- Discussion - Perspectives
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 Quality metrics are problem-dependent
 Max-cut problem: The cut size 

 Maximum Independent set problem: The size of the independent set.

 Time measurement
 60s time window for branch & bound algorithm
 1s time window for Tabu Search (C implementation)
 1s time window for D-Wave Q

III- Method - Metrics to measure

(5000 shots) (4780 shots) (3310 shots) (820 shots)
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