

Quantum Annealers Chain Strengths: A Simple Heuristic to Set Them All

Valentin Gilbert – Stéphane Louise

24th International Conference on Computational Science - 3rd July 2024

I- Context & Motivations – Quantum Annealing (QA)

D-Wave QA Hamiltonian

$$H(s) = A(s)H_{\rm M} + B(s)H_{\rm P}$$

$$H_{\mathrm{M}} = \sum_{v \in V_{\mathrm{s}}} \sigma_v^x$$

$$H_{\rm P} = \sum_{v \in V_{\rm s}} h_v \sigma_v^z + \sum_{(u,v) \in E_{\rm s}} J_{uv} \sigma_u^z \sigma_v^z$$

Eigen energies decomposition of the Hamiltonian as fixed s:

 $H_s |\psi_i(s)\rangle = E_i(s) |\psi_i(s)\rangle$ with $E_0(s) < E_1(s) < ... < E_k(s)$

Minimum spectral gap (the bigger, the better !)

$$\Delta_{\min} = \min_{0 \le s \le 1} (E_1(s) - E_0(s))$$

D-Wave Advantage 6.4 Annealing Schedule

3

I- Context & Motivations – QA programming flow

Divolves classical processing

Involves quantum processing

×

Gilbert Valentin – ICCS 2024

I- Context & Motivations – Research question

- How does the topology of physical qubits associated with a single logical qubit impact the chain strength and the resolution of the problem ?
 - How does the arrangement of the physical qubits impact the spectral gap ?

Which arrangement should be priviledged ?

- How to efficiently set the chain strength F_{ϕ} ?
 - Conservation of the minimum optimal solution

 $\arg\min C = \arg\min C'$

- Why is this value hard to set ?
 - Sweet spot usually determined experimentally.
 Strong but not too strong.
 - Imply auto-coupler and coupler strength rescaling.
 - Changes the problem Hamiltonian and can induce Integrated Control Errors (ICE) [1]

II- State of the Art

- Topology of Physical Qubits
 - Exploration of 4-clique minor-embedding [2]
 - Provide stronger qubits couplings
 - Reduce the chain break

- Chain strength F_{ϕ}
 - Upper-bound on individual qubits [3]:

$$F_{\phi(v)} < -\left(|h_i| + \sum_{j \in \operatorname{nbr}(i)} |J_{ij}|\right) \qquad O(D)$$

- Other bounds:
 - Tighter bound in O(DL) [3]
 - Exact Bound in $O(D2^L)$ [4]
- Average scaling of spin glass problems (e.g. SK problem [5] and default D-Wave method [1])

$$F_{\phi} \sim \tau \sqrt{n}$$

- Chain scan method [6] [7]
 - Use of the expectation value to optimize chain strength
- Other optimization approaches (Lagrangian [8] and Genetic-based [9] approaches)

III- Shape of the logical qubit

III- Shape of the logical qubit

- How does the arrangement of physical qubits representing a single logical qubit impact the chain strength and the resolution of the problem ?
 - Denser structures seem to require less coupling strength to maintain ferromagnetic coupling and maximize the minimum spectral gap
 - Spectral gap difference is negligible compared to the effect of weight rescaling
 - => Different embeddings with an equal number of qubits may have different optimal chain strengths.
- Chain scan for instances embedded with two different methods (CME [10] & CMR [11]):

IV- Setting the chain strength

- Measure of the chain break error rate.
- $p_{\rm b}(i)$: probability of having a chain break on qubit i
- $n_{
 m lq}$: number of logical qubits
- $n_{
 m s}\,$: number of shots

 Correlation between the chains strength and the duplication error rate (Previous study in [12])

Single shot chain break error rate

Average chain break error rate

IV- Setting the chain strength – Binary search

- Pros of the method:
 - Universal method (can be used for any Ising cost function)
 - Fast convergence
 - Require only a few shots per run

- Cons of the method:
 - Require the setting of a precise chain break interval for the breaking condition
 - May depend on the QC
 - Mays depend on the size of the problem

IV- Setting the chain strength – Results

- 30 instances of unweighted max-cut problem for each density
- Chain break intervals:

Advantage2:

$$[6 \times 10^{-3}, 2 \times 10^{-2}]$$

Advantage6.4:

$$[2 \times 10^{-2}, 5 \times 10^{-2}]$$

Shot / pre-processing step:
 128

 Final run number of shots: Advantage2: 3072

Advantage6.4: 4096

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			Best cut size	Cut size improvement				Step
Instance size	Density	Embedding		min	\max	mean	std	
n = 40	0.1	CMR	66.4	+0%	+0%	+0%	0%	5.4
	0.5	CMR	243	+0%	+2%	+0.2%	0%	5.8
	0.9	CMR	362.8	+2.1%	+8.2%	+5%	1.6%	4.6
n = 80	0.1	CMR	235.5	+0%	+0%	+0%	0%	4.7
	0.5	CME	804	+9.8%	+17.2%	+12.5%	0.2%	4.2
	0.9	CME	1435	+2%	+4.7%	+3.2%	0.6%	4.2
Advantage6.4			Best Cut size	Cut size improvement			Step	
Instance size	Density	Embedding		min	\max	mean	std	
n = 100	0.1	CMR	355.9	+0%	+0.3%	+0%	0%	4.5
	0.5	CME	1271.4	+5.6%	+14.5%	+8.8%	1.8%	2.7
	0.9	CME	2243	+1.4%	+3.7%	+2.5%	0.5%	3.7
n = 170	0.1	CMR	950.8	-2.1%	+0.6%	-0.5%	0.5%	2.1
	0.5	CME	3631.4	+2.8%	+6.2%	+4.5%	0.7%	2.1
	0.9	CME	6519.4	+0.4%	+1.4%	+0.8%	0.2%	3.2

V- Discussion & Perspectives

Conclusion

- Optimal chain strength seems to depend on the shape of physical qubits representing the logical qubit(denser mappings require lower chain strength).
- The chain strength can be optimized only using **duplication error rates**.
- Our method further optimizes the chain strength value with few pre-processing shots (depends on the optimal chain break interval).
- Perspectives
 - Study spectral gap tradeoffs between weight rescaling and adding new qubits to avoid the rescale.
 - Identify and optimize the optimal chain break interval used by our method as the breaking condition.
 - Try this method on other optimization problems (find problems for which the default D-Wave method is not efficient).
 - See if the chain strength can be individually optimized
 - => We made some attempts that are not conclusive

Thank You !!

Bibliography

- [1] D-wave system. solver properties and parameters (2024), https://docs.dwavesys.com/docs/latest/doc_solver_ref.html
- [2] Pelofske, E.: 4-clique network minor embedding for quantum annealers. ArXiv preprint arXiv:2301.08807 (2023)
- [3] Choi, V.: Minor-embedding in adiabatic quantum computation: I. the parameter setting problem. Quantum Information Processing 7, 193–209 (2008)
- [4] Fang, Y.L., Warburton, P.: Minimizing minor embedding energy: an application in quantum annealing. Quantum Information Processing 19(7), 191 (2020)
- [5] Raymond, J., Ndiaye, N., et al.: Improving performance of logical qubits by parameter tuning and topology compensation. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). pp. 295–305. IEEE (2020)
- [6] Hamerly, R., Inagaki, T., McMahon, et al.: Experimental investigation of performance differences between coherent ising machines and a quantum annealer. Science Advances 5(5) (2019)
- [7] Willsch, D., Willsch, M., et al.: Benchmarking advantage and d-wave 2000q quantum annealers with exact cover problems. QIP 21(4) (2022)
- [8] Le, T. V., Nguyen, M. V., Nguyen, T. N., Dinh, T. N., Djordjevic, I., & Zhang, Z. L. (2023, September). Benchmarking chain strength: An optimal approach for quantum annealing. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) (Vol. 1, pp. 397-406). IEEE.
- [9] Djidjev, H. N. (2023). Logical qubit implementation for quantum annealing: augmented Lagrangian approach. Quantum Science and Technology, 8(3), 035013.

Bibliography

- [10] Boothby, T., King, A.D., Roy, A.: Fast clique minor generation in chimera qubit connectivity graphs. Quantum Information Processing 15, 495–508 (2016)
- [11] Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741 (2014)
- [12] Gilbert, V., Rodriguez, J., Louise, S., & Sirdey, R. (2023, June). Solving Higher Order Binary Optimization Problems on NISQ Devices: Experiments and Limitations. In International Conference on Computational Science (pp. 224-232). Cham: Springer Nature Switzerland.

Outline

Context & Motivation

State of the Art

Topology of physical qubits for a single logical qubit

Setting the chain strength

