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■ The Quantum Approximate Optimization Algorithm (gate-based) (NISQ) [FGS14]

■ Exact resolution using quantum circuits (gate-based) (not NISQ) [Gro96]

Introduction - Quantum approaches for optimization problems

■ What makes a Quantum Annealer perform well?

■ How to improve their performance?

Research question
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● Universal (as quantum circuit)
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 Minor-embedding (Graph Minor Theory [RS95]) Rule 1:

All the edges in Gs must be 
represented in Gt 

Rule 2:
A logical qubit is 
represented by a connected 
subgraph of physical qubits 

Rule 3:
No overlap

NP-Hard problem for arbitrary
graphs
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 Average problem setting [VMK+14]
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3- Chain scan & Chain breaks

ΔE

Chain strength (arbitrary unit)

εb

Chain break intervals:
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 Fairness evaluation of  benchmarking methods:

 Fairness of instances set (diversity) [GLS23]
 Fairness of the benchmarking protocol (quantumbenchmarkzoo.org)

 Improvements of Quantum Annealers’ parameter setting
 The parameters list is long and complex (interdependence between parameters)
 The optimization of these parameters should be included in the TTS metric
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 Protocols to evaluate the fairness of benchmarking experiments

 Quantum Annealer parameters
 Interdependence of parameters (annealing schedules, annealing time, chain strength etc..)

=> Use of holistic method to tune these parameters all together?
 Recent access to very short annealing times and quenched schedules (simulation of closed system 

dynamics)

=> better understanding of the dynamics of quantum systems?

“NISQ will not change the world by itself, at least not right away; instead we should regard 
it as a step toward more powerful quantum technologies we hope to develop in the future.”
J. Preskill [Pre21]
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Thank you !
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A big thank to ACTIF (Association CEA des thésard.e.s 
d’île-de-France)

New president: Lise.jolicoeur@cea.fr
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 How to assess the quality of a mapping:
 D-Wave QA has a regular topology

For Pegasus topology:

 Definition of a lower bound on the number of physical qubits used in a mapping:

 Compute the overhead ratio considering this bound:

Optimal mapping
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 Comparison of the performance of our generation method against state of the art embedding method

Optimal mapping

Assumption: Instances with less duplicated qubits are more easily solved by QA => Seems to be true
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III- Shape of the logical qubit
Source graph Chain encoding Cycle encoding Clique encoding

Native encoding
Chain encoding

Native encoding rescaled 1/4
Native encoding rescaled 1/2

Cycle encoding
Clique encoding

|Fϕ|

Clique encoding
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