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■ The Quantum Approximate Optimization Algorithm (gate-based) (NISQ) [FGS14]

■ Exact resolution using quantum circuits (gate-based) (not NISQ) [Gro96]

Introduction - Quantum approaches for optimization problems

■ What makes a Quantum Annealer perform well?

■ How to improve their performance?

Research question
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All the edges in Gs must be 
represented in Gt 

Rule 2:
A logical qubit is 
represented by a connected 
subgraph of physical qubits 

Rule 3:
No overlap

NP-Hard problem for arbitrary
graphs
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3- The embedding problem II
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 How to set the chain between these qubits ?
 Average problem setting [VMK+14]
 Upper bonds [Cho08]
 Basic Scan [HIM+18] [WWC+22]
 Advanced algorithms [Dji23]

 Global chain strength:
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3- Chain scan & Chain breaks

ΔE

Chain strength (arbitrary unit)

εb

Chain break intervals:
Advantage2:

Advantage6.4: 
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 Fairness of the benchmarking protocol (quantumbenchmarkzoo.org)

 Improvements of Quantum Annealers’ parameter setting
 The parameters list is long and complex (interdependence between parameters)
 The optimization of these parameters should be included in the TTS metric
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 Interdependence of parameters (annealing schedules, annealing time, chain strength etc..)

=> Use of holistic method to tune these parameters all together?
 Recent access to very short annealing times and quenched schedules (simulation of closed system 

dynamics)

=> better understanding of the dynamics of quantum systems?

“NISQ will not change the world by itself, at least not right away; instead we should regard 
it as a step toward more powerful quantum technologies we hope to develop in the future.”
J. Preskill [Pre21]
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Thank you !
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 How to assess the quality of a mapping:
 D-Wave QA has a regular topology

For Pegasus topology:

 Definition of a lower bound on the number of physical qubits used in a mapping:

 Compute the overhead ratio considering this bound:

Optimal mapping
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 Comparison of the performance of our generation method against state of the art embedding method

Optimal mapping

Assumption: Instances with less duplicated qubits are more easily solved by QA => Seems to be true
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III- Shape of the logical qubit
Source graph Chain encoding Cycle encoding Clique encoding

Native encoding
Chain encoding

Native encoding rescaled 1/4
Native encoding rescaled 1/2

Cycle encoding
Clique encoding
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